Tripp Lite
1111 W. 35th Street
Chicago, IL 60609
+1 (773) 869-1774
+1 (773) 869-1329
presaleshelp@tripplite.com
USB-C Charger

USB Charging

Originally designed as a data interface with only limited power delivery capabilities, Universal Serial Bus (USB) has become a primary method of powering and charging mobile devices.

There are four methods of distributing power between USB-enabled Hosts and Devices.

1 Default Power

The USB 2.0 specification allows Hosts to deliver 5V at 500 mA, for a total power output of 2.5 watts. USB 3.0 and 3.1 allow 5V at 900 mA (4.5W). Certified Hosts and Devices must limit their power delivery and consumption to these "default" power levels.

Chart 1: The Evolution of Power Delivery over USB
Specifications Max. Voltage Max. Current Max. Power
USB 2.0 5V 500mA 2.5W
USB 3.0 / USB3.1 5V 900mA 4.5W
USB Battery Charging (BC) 1.2 5V 1.5A 7.5W
USB-C Current Mode (non-PD) 5V 3A 15W
USB-C / Power Delivery (PD) 20V 5A 100W

2 USB Battery Charging Specification

The USB Battery Charging Specification allows devices to draw current in excess of the default power limits. The first version of the specification (BC 1.0) was released in 2007, followed by version 1.1 in 2009, and the current, BC 1.2, in 2010.

BC 1.2 introduced three types of downstream ports:

  • Standard Downstream Port (SDP) - power is limited to the default power of the applicable USB specification (USB 2.0 or USB 3.x)
  • Dedicated Charging Ports (DCP) - delivers power only (no data) up to 1.5A
  • Charging Downstream Port (CDP) - capable of delivering both data and power up to 1.5A.

3 USB-C® Current Mode

USB-C ports are capable of delivering more power than the default power levels of USB 2.0 or USB 3.x. Downstream Facing Ports (DFPs) signal to Upstream Facing Ports (UFPs) their ability to deliver a higher current.

4 Power Delivery Protocol

USB Power Delivery (USB-PD) refers to the protocol that allows a "power provider," a cable and a "power consumer" to agree on the current and voltage levels. Because power can flow in either direction, the role of provider and consumer can change at any time.

This smart charging protocol enables devices to negotiate voltage, current and direction of power and data flow over the USB cable. Negotiations are governed by power rules and offer a range of voltage and current configurations. For example, a phone needing 18W might negotiate 9V and 3A from the power source.

USB-PD is used by Apple® iPhone®, iPad®, MacBook Pro®, Google Pixel™, and other smartphones and portable devices.

usb c charging cable

Do All USB-C Cables Support PD?
Yes. All USB-C to USB-C cables have the Configuration Channel (CC) required to support PD communication, but don't necessarily support the full range of voltage/current levels specified by USB-PD. The current on a passive USB-C cable is limited to 3A so the most it can support is 3A x 20V = 60W. The length of a passive cable is also limited to 4 meters (13 ft). Cables that support power delivery greater than 3A are electronically marked and rated up to 100W (5A x 20V).

Do all USB-C ports have the same functionality?
No. Even though all USB-C ports look the same, the features they support can vary widely. For example, a USB-C port on a wall charger will only charge devices. Ports on laptops may vary in the level of power they supply and the speed of data transmission. Some laptop USB-C ports support data only, power only or a combination of the two so check your machine's specifications before buying peripherals.

What is Fast Role Swap?
The USB Power Delivery 2.0 specification includes Fast Role Swap (FRS), a feature that ensures connected devices can continue to function when power is interrupted. As the name implies, Fast Role Swap allows a provider of power (a Source) to quickly and automatically become a consumer of power (a Sink). For example, let's say a hub, acting as a Source, is providing power to a laptop and an external hard disk drive (HDD) when it is unexpectedly disconnected from the AC outlet. The hub signals to the other devices that it needs to swap roles and become a Sink. The laptop, detecting the Fast Swap signal from the hub, switches its role from Sink to Source and begins supplying power from its battery to the hub and (indirectly) the HHD.


Other Fast Charging Standards

To make a device charge more quickly, most manufacturers will either increase the current (amps) or the voltage using one of the fast charging standards (e.g. USB-PD, Qualcomm Quick Charge™) or a proprietary fast charging protocol like Samsung® Adaptive Fast Charging or Motorola™ Rapid Charging.

Qualcomm Quick Charge™ (QC)

Phones and tablets that use the Qualcomm Snapdragon chipset can use the company's Quick Charge standard. The current version, Quick Charge 4.0, requires a USB-C cable and a device that uses the Snapdragon Series 8 chip. Older devices can use Quick Charge 2.0 and 3.0.

In many ways, the QC standard is similar to USB-PD, particularly in its use of power negotiation protocols and variable voltage selection. But while Quick Charge is limited to phones and tablets that use Qualcomm's System on a Chip (SoC), USB-PD is more of an industry standard adopted by a wide swath of the market, including laptops.


What's Next for Charging?

As more devices integrate USB Type-C® ports for data transfer, expect to see manufacturers to take advantage of its power and Alt Mode capabilities too. For example, Apple's MacBook Air® ships with a 30W USB-C Power Adapter. Google's Pixelbook has a USB-C port on either side so you can charge and connect to an external monitor at the same time.

Currently, USB is still a confusing maze of specifications, data transfer rates, wattages and video resolutions. But as USB-C, PD 3.0 and USB4 converge in a new crop of laptops and peripherals due early 2021, a single port world may be just around the corner.

gan charger

New GaN chargers like this one are smaller and charge everything from phones to laptops


Products Mentioned in This Article

USB Charging Terminology

Host - A USB system has a single Host that controls communication between Devices. Under USB 2.0 and earlier specifications, roles were fixed. USB On-the-Go (OTG), USB 3.0 and future versions allowed nodes to change roles from a Host to a Device. A Host role is sometimes called "source", referring to its power role.

Device - A peripherals, such as thumb drive, keyboard and external hard drive, attached to a USB Host. A Device can also be referred to by its power role, "sink."

Hub - Sometimes called a port expander, a Hub expands a single USB port into several ports. Hubs have one upstream port that connects to a Host, and multiple downstream ports for attached devices.

In the USB-C Specification, Hosts are referred to as Downstream Facing Ports (DFPs) and Devices are known as Upstream Facing Ports (UFPs). These data roles determine the direction of data flow.

Clear List

CONTACT US

Phone

Sales
Mon - Fri 8 AM - 5:30 PM CST
+1 (773) 869-1774

Support
Mon - Fri: 8 AM - 5:30 PM CST
+1 (773) 869-1234

Tripp Lite
1111 West 35th Street
Chicago, Illinois 60609
United States

+1 (773) 869-1111 Main
1 773.869.1329 Fax

Business Hours
8 AM - 5:30 PM CST

See all contact options

Need help with your purchase?
We're always available to help with questions, including product selection, sizing, installation and product customization. Call us at +1 (773) 869-1774 or email presaleshelp@tripplite.com.